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Summary

Comparing activities of purified toxins from Bacillus
thuringiensis ssp. israelensis against larvae of seven
mosquito species (vectors of tropical diseases) that
belong to three genera, gleaned from the literature,
disclosed highly significant variations in the levels of
LC50 as well as in the hierarchy of susceptibilities.
Similar toxicity comparisons were performed be-
tween nine transgenic Gram-negative species, four of
which are cyanobacterial, expressing various combi-
nations of cry genes, cyt1Aa and p20, against larvae
of four mosquito species as potential agents for bio-
logical control. Reasons for inconsistencies are listed
and discussed. Standard conditions for toxin isola-
tion and presentation to larvae are sought. A set of
lyophilized powders prepared identically from six
Escherichia coli clones expressing combinations of
four genes displayed toxicities against larvae of three

mosquito species, with levels that differed between
them but with identical hierarchy.

Introduction

Mosquitoes cause enormous public health menace by
transmitting various tropical diseases and by being a
nuisance (Service, 2004). Many species of the genera
Anopheles, Aedes and Culex are vectors of, e.g. malaria
(WHO, 2006), yellow fever, dengue fever, haemorrhagic
fever and lymphatic filariasis (Gyapong and Twum-Danso,
2006). Chemical insecticides used in vector control pro-
grammes harm the environment (Tabashnik, 1994) with
adverse impacts on man and nature. To deal with these
problems and limitations, alternative technologies such as
biological control are called for. The Gram-positive spore-
forming bacterium Bacillus thuringiensis ssp. israelensis
is the most powerful and environment-friendly component
in malaria integrated vector management (Fillinger et al.,
2003). This bacterium forms a parasporal crystalline toxic
body (the d-endotoxin) that is widely used as a commer-
cial bio-pesticide against larvae of noxious arthropod
species of the suborder Nematocera, including mosqui-
toes, black flies and chironomid midges (Margalith and
Ben-Dov, 2000).

The larvicidity of B. thuringiensis ssp. israelensis
resides in at least four major crystal pro-toxic proteins, of
134, 128, 72 and 27 kDa, encoded by cry4Aa, cry4Ba,
cry11Aa and cyt1Aa respectively, and all mapped on the
128 kb plasmid known as pBtoxis (Ben-Dov et al., 1999;
Berry et al., 2002). The level of toxicity depends on the
capacity of the target species to activate the pro-toxin by
breaking it down into the active toxic components using
specific proteases prevailing in the basic larval mid-gut.
Subsequent steps involve toxin binding to receptors
(Feldmann et al., 1995; Yamagiwa et al., 2001; Boonserm
et al., 2005; 2006; Fernandez et al., 2005; 2006; Cha-
yaratanasin et al., 2007), insertion into the membrane and
aggregation, leading to the formation of gated, cation-
selective channels (Knowles et al., 1989; Aronson and
Shai, 2001). Lethality is due to destruction of the trans-
membrane potential, with subsequent osmotic lysis of
cells lining the mid-gut (Knowles and Ellar, 1987).
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Despite the low toxicity of Cyt1Aa against exposed
larvae, it is highly synergistic with the Cry toxins and their
combinations in vitro (Wu et al., 1994; Crickmore et al.,
1995; Wirth et al., 1997; 2007; Pérez et al., 2005) due to
different modes of action (Butko, 2003). The latter are
structurally unrelated to Cyt1Aa, but resemble in their
membrane-perforating ability (Margalith and Ben-Dov,
2000). The Cry toxins bind to membrane proteins whereas
Cyt1Aa binds to the unsaturated phospholipids (Butko,
2003). Cry11Aa, for example, binds to a 148 kDa pro-
tein in Anopheles stephensi (Feldmann et al., 1995) and
to a 65 kDa alkaline phosphatase in cells of the Aedes
aegypti digestive system (Fernandez et al., 2006).
Various combinations of Cry toxins with Cyt1Aa alleviate
selection of resistance in the targets (Georghiou and
Wirth, 1997; Wirth et al., 1997; 2007).

Susceptibility of mosquito larvae to purified
B. thuringiensis ssp. israelensis toxins

Seven species of mosquitoes that belong to three genera
are most commonly used in bioassays to estimate activi-
ties of the four crystal proteins and synergies among them
(Margalith and Ben-Dov, 2000). Table 1 summarizes all
LC50 values of purified toxins and their combinations
against at least one species of each of the three genera,
gleaned from the literature reported to date.

The most conspicuous observations are the huge varia-
tion of the LC50 values and apparent inconsistencies
between toxicities of different larvicidal Cry and Cyt1Aa

toxins against various mosquito species obtained in dif-
ferent assays. It can thus be concluded that the materials
used in the bioassays dramatically affect the outcome.
The toxins are usually purified from different bacte-
rial species (original, recombinant, Gram-positive or
-negative) grown under varying culture conditions
(medium, time, temperature, aeration) and presented to
larvae of varying instars (1st-4th) under varied densities
(0.17–10 larvae ml-1) and during various periods (12–
48 h). For example (Table 1), toxicity of Cry11Aa against
larvae of the same three species was an order of magni-
tude lower (LC50 between 8.6 and 135 ng ml-1) in the
hands of one group (Revina et al., 2004) than that
(121.5–372.4 ng ml-1) obtained by another team (Delé-
cluse et al., 1995). Strikingly, the respective numbers for
Culex pipiens alone were 8.6 and 372.4! Similar discrep-
ancies are also true for Cry4Ba, Cyt1Aa and combination
of Cry4Aa + Cry4Ba.

In an attempt to further clarify these differences, the data
summarized in Table 1 was normalized (Table 2) so that
LC50 in bioassays against Ae. aegypti (to which data are
complete) were set in each case to a value of 1.00. Despite
some clarifications, many inconsistencies persist. For
example, relative toxicities of purified Cry4Aa and Cry4Ba
to larvae of four Anopheles species vary up to 1900- and
15-fold respectively, whereas against two Culex species
LC50 fluctuates up to about 12- and 50-fold respectively
(Table 2). Relative LC50 values of purified Cry11Aa against
An. stephensi vary up to 7.9-fold, whereas against C.
pipiens they vary up to about 3.8-fold only.

Table 1. Summary of LC50 values (ng ml-1) of toxins from B. thuringiensis ssp. israelensis against larvae of seven mosquito species (three genera).

Cry/Cyt
combination

Culex Anopheles

Aedes
aegypti Referencea

quinque
fasciatus pipiens stephensi dirus gambiae

quadrim
aculatus

Cry4Aa 251 1296 563 Poncet et al. (1995)
345 159 2390 Boonserm et al. (2006)

400 7400 1600 Delecluse et al. (1993)
980 1170 1360 Angsuthanasombat et al. (1992)
980 400 > 80 000 600 Abdullah et al. (2003)

Cry11Aa 268 455 287 Poncet et al. (1995)
8.6 135 10.8 Revina et al. (2004)

372.4 326 121.5 Delecluse et al. (1995)
Cyt1Aa 1200 6300 880 Thiery et al. (1997)

400 600 2700 1000 Juárez-Pérez et al. (2002)
Cry4Aa + Cry11Aa 110 165 108 Poncet et al. (1995)
Cry4Ba > 50 000 17 145 Poncet et al. (1995)

> 50 000 550 300 Delecluse et al. (1993)
> 80 000 > 20 000 25 61 Abdullah et al. 2003

24 500 790 940 Angsuthanasombat et al. (1992)
Cry4Aa + Cry4Ba 36 16 52 Poncet et al. (1995)

63 300 82.6 Delecluse et al. (1993)
180 380 280 Angsuthanasombat et al. (1992)

Cry4Ba + Cry11Aa 12 495 196 207 Poncet et al. (1995)
Cry4Aa + Cry4Ba + Cry11Aa 84 114 100 Poncet et al. (1995)

a. All toxins were obtained by purification (described in each reference). Recorded are only preparations bioassayed against at least one species
of each of the three genera.
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For the sake of completeness, Table 3 summarizes data
from five additional publications, all with purified toxins
(except one, with spore-crystal powder). They evaluate
toxicities against A. aegypti only, but of varying larval
instars, between 1st and 4th, thus explaining the wide
range of LC50 values obtained. When purified Cry11Aa
produced in recombinant B. thuringiensis ssp. kurstaki was
used against 4th instar larvae of Culex quinquefasciatus
however, similar values were indeed obtained in two differ-
ent studies by the same team and some synergy observed
with Cyt1Aa (Chang et al., 1992; 1993). Toxicity of Cry11A
produced in recombinant B. thuringiensis ssp. israelensis
was several-fold higher against 4th instar larvae of C.
pipiens (Yamagiwa et al., 2004).

Toxicity of recombinant Gram-negative bacteria
expressing cry and cyt

Many more Gram-negative species were engineered to
express several cry and cyt genes in attempts to overcome
limitations (such as low efficacy and short residual activity)
encountered in biological control of mosquitoes (Margalith
and Ben-Dov, 2000). Table 4 sums up results of 14 toxicity
studies with 9 such species, 4 of which are cyanobacteria,
against larvae of 4 species in all 4 instar stages, fed in
variable manners.

Transgenic Agmenellum quadruplicatum PR-6 and
Synechocystis PCC 6803 expressing cry4Ba under PcpcB

and PpsbA promoters respectively, displayed very low

Table 2. Relative LC50 values of purified toxins against larvae of six mosquito species (two genera).

Cry/Cyt combination

Culex Anopheles

quinquefasciatus pipiens stephensi dirus gambiae quadrimaculatus

Cry4Aa 0.45 2.30
0.14 0.07

0.25 4.63
0.72 0.86
1.63 0.67 > 133

Cry11Aa 0.93 1.59
0.80 12.50
3.07 2.98

Cyt1Aa 1.36 7.16
0.40 0.60 2.70

Cry4Aa + Cry11Aa 1.02 1.53
Cry4Ba > 344.83 0.12

> 166.67 1.83
> 1311.48 > 327.87 0.41

26.06 0.84
Cry4Aa + Cry4Ba 0.69 0.31

0.76 3.63
0.64 1.36

Cry4Ba + Cry11Aa 60.36 0.95
Cry4Aa + Cry4Ba + Cry11Aa 0.84 1.14

LC50 values from Table 1 were divided each by the one obtained by the same team with larvae of Ae. aegypti.

Table 3. Larvicidities of purified toxin combinations from recombinant B. thuringiensis against A. aegypti (complementary to Table 1).

Cry/Cyt Combination

LC50 (ng ml-1) against A. aegypti larvae

Crickmore et al. (1995)
(3rd instar)

Pérez et al. (2005)
(4th instar)

Wu et al. (1994)
(1st instar)

Park et al. (1999)
(1st instar)

Beltrão and
Silva-Filha (2007)
(4th instar)b

Cry4Aa 1125 13 010
Cry4Ba 467 120
Cry11Aa 224 236 85 73 1350
Cyt1Aa 1209 1245 60
Cry11Aa + Cyt1Aaa 118 (1:1) 12.3 (1:0.2) 14.8 (1:1)
Cry4Aa + Cyt1Aaa 75 (1:1)
Cry4Ba + Cyt1Aaa 62 (1:1)
Cry4Ba + Cry11Aaa 173 (1:1)
Cry4Aa + Cry4Ba + Cry11Aaa 125 (1:1:1)
Cry4Aa + Cry4Ba + Cyt1Aaa 77 (1:1:1)

a. Toxins were mixed in the proportions (w/w) indicated in parentheses.
b. Powders of recombinant B. thuringiensis ssp. israelensis containing spore/crystal mixtures.
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toxicity (Angsuthanasombat and Panyim, 1989; Chung-
jatupornchai, 1990). Using tandem promoters (its own
and Plac) in Synechococcus PCC 7942 slightly improved
the toxicity against 1st instar larvae of Culex restuans
(Soltes-Rak et al., 1993). Tandem strong promoters (PpsbA

and PA1) and favourable codon usage in the filamentous
cyanobacterium Anabaena PCC 7120 raised efficiency of
expression of cry4Aa, cry11Aa and cyt1Aa (Wu et al.,
1997; Khasdan et al., 2003). The higher level of Cyt1Aa in
the clone expressing p20 as well than without (regulated
by the same tandem promoters) indicate that P20 protects
Anabaena from the deleterious action of Cyt1Aa, as it
does in Escherichia coli (Douek et al., 1992; Khasdan
et al., 2001; Manasherob et al., 2001). Recombinant
Pseudomonas putida expressing cry11Aa was not toxic to
larvae unless coexpressed with p20, in which case toxicity
resembled that of E. coli (Xu et al., 2001).

The product of p20 stabilizes both Cyt1Aa or Cry11A in
recombinant E. coli (as well as in B. thuringiensis; Wu and
Federici, 1993; 1995) by a post-transcriptional mecha-
nism; substantially more Cyt1Aa/Cry11Aa was produced
in recombinant E. coli carrying p20 than in those without it
(McLean and Whiteley, 1987; Adams et al., 1989; Visick
and Whiteley, 1991). Some larvicidity was obtained when
cry11Aa was expressed together with p20 but not alone
(Ben-Dov et al., 1995). Cry11Aa is thus apparently
degraded and partially stabilized by P20. Similarly,
Cry11Aa alone formed parasporal inclusions in an acrys-
talliferous recombinant B. thuringiensis species, and
higher levels were observed in the presence of P20
(Chang et al., 1992; 1993; Wu and Federici, 1995).
Increased production of the fused Cry4Aa-DLacZ in E. coli
when expressed with p20 in trans was also observed
(Yoshisue et al., 1992).

Toxicity of cry4Ba expressed in the ubiquitous
Gram-negative Caulobacter crescentus varied 100-fold
according to the regulatory region constructed to drive
its expression (Thanabalu et al., 1992; Yap et al., 1994a).
The same gene was also efficiently expressed in E. coli
and formed phase-bright insoluble inclusions, which
were highly toxic to Ae. aegypti larvae (Angsuthanasom-
bat et al., 1987; Chungiatupornchai et al., 1988; Delé-
cluse et al., 1988; Ward and Ellar, 1988). Toxicities of
Cry4Ba against Ae. aegypti and C. quinquefasciatus
larvae were synergized by Cyt2Aa when their encoding
genes were coexpressed in E. coli (Promdonkoy et al.,
2005).

To test whether bioassays with recombinant strains
under identical conditions will reduce variability, the same
batch of standard freeze-dried powders that had been
assayed with C. quinquefasciatus (Wirth et al., 2007) was
exploited here to evaluate relative toxicities against Ae.
aegypti and Anopheles arabiensis as well, and the bioas-
says were conducted with larvae of the same instar raisedTa
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similarly. The powders were prepared identically from
each of 15 clones expressing all combinations of four
genes (cry4Aa, cry11Aa, cyt1Aa and p20) from the same
promoter in the same E. coli strain (Khasdan et al., 2001).
All four recombinants with each of the four genes alone,
four out of six with two genes each and one of the four
with three gene combinations displayed very low toxicities
(if at all) against at least one of these mosquito species.
Thus, the more toxin genes are coexpressed in E. coli, the
higher is the likelihood that it would be effective.

Toxicities of the six clones that displayed measurable
LC50 values against all three species are recorded in
Table 5. Mosquito larvicidities of these clones against Ae.
aegypti were comparable to those against C. quinquefas-
ciatus (1.3-fold more toxic on the average) but signifi-
cantly higher (5.4-fold on the average) than against
An. arabiensis. Moreover, the toxicity hierarchal order
was identical, i.e. pVE4-ADRC > pVE4-ARC > pVE4-AC =
pHE4-AD > pHE4-ADR > pVE4-ADC. The results are also
consistent with the notion that Cyt1Aa is synergistic to the
Cry toxins (Wu et al., 1994; Crickmore et al., 1995; Wirth
et al., 1997; Pérez et al., 2005), provided it is co-produced
with the helper P20 (Wu and Federici, 1993; Manasherob
et al., 2001).

Toxicity of heterologous proteins in recombinant
species is usually poorer due to weak expression of
the d-endotoxin genes by the original promoters, low
stability and proteolytic cleavage of polypeptides and
non-formation or malformation of crystals. The amount of
active heterologous proteins expressed depends
however, on various additional factors, including regula-
tion of replication (i.e. plasmid copy number), transcription
(promoter structure and s factors), translation (efficiency
of ribosomal binding site, U-rich sequence and codon
usage) and mRNA stability (stem-loop structure at the 3′

end, and 5′ mRNA stabilizer) (Chandler and Pritchard,
1975; Ikemura, 1981; Studier and Moffatt, 1986; Vell-
anoweth and Rabinowitz, 1992; Soltes-Rak et al., 1993;
1995; Yap et al., 1994a; Agaisse and Lereclus, 1995;
Baum and Malvar, 1995; Dong et al., 1995; Guerchicoff
et al., 1996; Liu et al., 1996; Park et al., 1999; 2003).

Additional sources of toxicity variations

In addition to the conditions listed above that can be
modified at will and hence reduce bioassay fluctuations,
at least two natural features are likely to raise variability
of the results, feeding behaviour of the larvae and the
structure and density of their gut toxin receptors (not
only between different genera but also between certain
species of the same genus). For example, surface feeding
(at the air–water interface) by Anopheles larvae limits their
ingestion of the toxin (whether pure or in bacteria), which
quickly settles at the bottom of the water body, whereas
bottom feeders, such as Aedes and Culex, filter-feed at all
levels of the water column (Merrit et al., 1992; Service,
2004), enhancing the interaction with the introduced toxin.
This may partially explain the higher susceptibility and
lower variability in LC50 values of Aedes and Culex to
the larvicidal proteins than of Anopheles (Tables 1, 2, 4
and 5).

Toxicity comparisons with several mosquito species
indicate existence of different receptors or of their
concentrations on the midgut epithelium. For example
(Tables 1 and 2), Cry4Aa displayed high toxicity against
C. pipiens, less against Ae. aegypti, and low against An.
stephensi (Poncet et al., 1995), but high toxicity against
Anopheles dirus, less against C. quinquefasciatus, and
lowest against Ae. aegypti (Boonserm et al., 2006). The
range of target mosquitoes affected by Cry4Ba differs

Table 5. Toxicities of six transgenic E. coli strains carrying combinations of four genes from B. thuringiensis ssp. israelensis against three mosquito
species.

Strainsa (genes)

Mosquito larvicidal activity, LC50 (mg ml-1)b [relative values]c

C. quinquefasciatusd Ae. aegypti e An. arabiensis f

pVE4-ADRC (cry4Aa, cry11Aa, p20, cyt1Aa) 0.6 (0.4–0.8) [0.9] 0.7 (0.6–0.7) [1.0] 3.2 (2.4–4.4) [4.7]
pVE4-ARC (cry4Aa, p20, cyt1Aa) 0.9 (0.7–1.3) [1.1] 0.9 (0.8–0.9) [1.0] 6.2 (5.7–6.8) [7.1]
pHE4-ADR (cry4Aa, cry11Aa, p20) 3.1 (1.2–8.3) [1.7] 1.8 (1.6–2.1) [1.0] 11.2 (8.5–16.0) [6.1]
pVE4-ADC (cry4Aa, cry11Aa, cyt1Aa) 4.2 (2.0–9.1) [0.7] 6.4 (5.8–7.1) [1.0] 20.4 (17.5–25.0) [3.2]
pVE4-AC (cry4Aa, cyt1Aa) 1.5 (1.2–1.7) [1.2] 1.3 (0.8–1.8) [1.0] 7.0 (4.9–9.4) [5.6]
pHE4-AD (cry4Aa, cry11Aa) 1.5 (0.6–4.0) [1.2] 1.3 (1.1–1.6) [1.0] 7.5 (5.2–11.3) [5.8]

a. Clones designated pHE4- stem from Ben-Dov and colleagues (1995) and those designated pVE4- stem from Khasdan and colleagues (2001).
b. LC50 values represent the results of at least three bioassays performed with the same powder preparation (Wirth et al., 2007). Numbers in
parentheses are 95% confidence limits, as determined by probit analysis.
c. Values normalized to LC50 against larvae of Ae. aegypti.
d. Values taken from Wirth and colleagues (2007).
e. Performed as described before (e.g. Khasdan et al., 2001) but with the same powders as used in Wirth and colleagues (2007).
f. Larvae of An. arabiensis were obtained from the National Institutes of Health Sciences, Harare, Zimbabwe. The eggs were hatched and larvae
reared to the 3rd instar stage at 28 � 0.5°C and relative humidity of 70%, on ground dog biscuit and Tetramin Baby Fish Food (Tetra GmbH
D-49304 Melle, Germany).
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from that of Cry4Aa, possibly by using distinct binding
sites for interaction with the host receptors (Boonserm
et al., 2006), but the specific receptors for Cry4Aa and
Cry4Ba still remain to be determined. Involvement of their
domains II and III in toxin-receptor recognition/binding has
been shown recently (Yamagiwa et al., 2001; Boonserm
et al., 2005; 2006; Beltrão and Silva-Filha, 2007; Cha-
yaratanasin et al., 2007).

Concluding remarks

The huge variation of LC50 values obtained in bioassays of
mosquito larvicidal Cry and Cyt1Aa proteins against
various mosquito species seems to result from vast dif-
ferences in the procedures involved. These can be
divided into several categories, strain and growth of the
producing bacteria, isolation of the toxins and bioassays
conditions, as follows.

The toxin-producing bacteria. These can be either the
original B. thuringiensis subspecies or recombinant
strains. The transgenic species can either be Gram-
negative or -positive, the latter from either the same or
different genus. Protein folding and solubility are affected
by the producer species, which sometimes dramatically
modify the final toxicity attributes. Different culture condi-
tions, such as medium composition and pH, growth tem-
perature, mode of aeration and period of cultivation till
harvest, all affect the amounts of toxins produced,
although not their specific activities.

Toxin purification and processing. The mode of purifica-
tion depends on the consistency at which the toxin is
synthesized in vivo. The toxins, produced as crystals in
the original species, end up in recombinant strains as
inclusion bodies, crystals or soluble proteins. Solubiliza-
tion methods vary immensely, sometimes require pH
shifts, and toxicity level depends on the mode of pro-toxin
activation (protease species and incubation conditions).

Bioassays: larvae and conditions. Susceptibility of larvae
is age-dependent: 4th instars require an order of magni-
tude higher concentration to be affected than 1st instars,
for example, due to changes in their size and protease
composition/contents. Literature-recorded bioassays vary
dramatically in the densities of larvae (0.17–10 ml-1) and
periods of exposure to the toxin (12–48 h). Food availabil-
ity, water quality and temperature are factors to be
considered.
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