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Abstract This work aims to predict the flexural behavior of reinforced concrete slabs by combining a smeared finite element model 
derived from fracture mechanics for the simulation of the decline in the flexural rigidity of the concrete, and the symplectic theory 
of elasticity, which governs the bending of the structural element in question. Appropriate modifications have been carried out on 
the smeared finite element model to better reflect the compressive behavior of concrete. The loading is incremental such that in 
each load step, concrete behavior is treated as an elastic problem, and the response of the concrete slabs determined using the 
symplectic method, which provides exact bending solutions to thin rectangular plates. For the validation of the model thus 
proposed, congruent cases of concrete slabs in literature are studied. Evaluation of the results achieved from the proposed model 
demonstrated relatively good predictability of reinforced concrete slabs in flexure.  
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1. Introduction 
The construction industry has experienced rapid growth 
over the course of the last decade, with an increase in the 
demand for buildings that are fast to construct, and have 
large uninterrupted floor areas. The trend towards longer 
spans and use of lightweight floor systems have the effect 
of reducing the flexural rigidity of the structural systems 
[1], bringing to focus the performance of floors subjected 
to loading. This is especially crucial in reinforced 
concrete, which undergoes cracking after the yield surface 
is surpassed, compromising the serviceability and 
ultimate limit capacities of the structure. 

The primary variable under consideration in the 
response of floors to loading is transverse deformation. 
There are several analytical solutions developed to 
determine this deflection for isotropic materials, such as, 
structural steel. Some of these methods include Navier’s 
Solution and Levy’s solution [2]. However, these 
methods cannot be accurately used to predict the behavior 
of non-isotropic materials, such as, plain and reinforced 
concrete. There is need to come up with a creative 
representation of the material behavior of concrete plates 
under loading. Such a representation can be developed 
with the use of numerical methods. 

http://sri.jkuat.ac.ke/ojs/index.php/sri
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Some of the numerical methods applied in the analysis 
of plate deformation include finite difference method, 
finite element method, and finite strip method developed 
in the late 20th century. More modern methods for the 
analysis include the method of differential quadrature [3], 
method of discrete singular convolution [4], differential 
quadrature element method, and spline element method. 
Nonetheless, these methods are semi-inverse approaches 
for Kirchhoff plate bending, and require the pre-selection 
of a trial function to accurately analyze the plate 
deformation.  

A new symplectic method was developed, which 
surpasses the limitations of these classical semi-inverse 
approaches, and extends the scope of analytical solutions 
[5]. This system implements a systematic and derivational 
procedure to determine the analytical solutions governed 
by the various loading and boundary conditions, resulting 
in a more rational model of the structure compared to the 
aforementioned numerical methods. This new method is 
applied in the numerical analysis of the deformation of the 
concrete plates. 

The behavior of reinforced concrete slabs can be 
assumed to be described by a plane stress field. Kwak and 
Filippou [6] defined separate models for the concrete and 
reinforcing steel which were then combined with a model 
for the bond-slip interaction between the reinforcing steel 
and the surrounding adjacent concrete, to govern the 
behavior of the composite element. The failure of the 
structural element is defined by the rotating smeared 
crack model, where the crack direction is perpendicular to 
the direction of the principal tensile strain, and changes 
with respect to the loading history, thus no shear strain 
develops in the crack plane, thus negating the need for a 
cracked shear modulus [7]. 

In the failure envelope developed by [6], several 
assumptions were made in the representation of the 
concrete stress-strain relationship to simplify the model, 
namely (a) linear elastic up to a stress of 0.6𝜎𝜎𝑖𝑖𝑖𝑖, (b) linear 
plastic to 0.6𝜎𝜎𝑖𝑖𝑖𝑖, (c) linear strain softening, with concrete 
crushing at 0.85𝜎𝜎𝑖𝑖𝑖𝑖 where 𝜎𝜎𝑖𝑖𝑖𝑖 is the ultimate stress. 
However, the concrete stress-strain curve determined 
from experimental studies is not linear, but a curve with 
the peak at the ultimate stress of the specific design mix. 
In this study, instead of the above assumptions, a more 
realistic representation of the concrete stress strain curve 
is adopted as proposed by Yi et al. [8]. 

Other nonlinear numerical models have been applied to 
determine the flexural behavior of non-isotropic structural 
elements, such as mass-spring models, which was used in 

the analysis of plate elements [9] [10], and the stress 
function method, which was successfully extended to 
analyze functionally graded anisotropic beams with 
arbitrary material inhomogeneity along the beam depth 
[11], [12]. However, these models have several 
limitations in their application, with the former not 
scalable to define real life structures, the latter requiring 
extensive and skillful experience in structural dynamics, 
and both being limited to specific boundary and support 
conditions. 

The main objective of this work is to verify the 
application of the symplectic elasticity approach, which 
has been shown to provide accurate and exact results to 
bending problems with various loading and boundary 
conditions [13], to the nonlinear analysis of reinforced 
concrete slabs by combining it with a modified rotating 
smeared crack model. The model developed is applied to 
moderately thin plates, with a length to thickness ratio 
ranging from 20 to 35. The developed model was 
validated by two reinforced concrete slabs evaluated 
experimentally by Taylor et al. [14], and Ghoneim & 
McGregor [15]. 

 

2. Analytical Formulation 

2.1 Concrete material matrix 
The model developed by Kwak and Filippou [6] is applied 
with several modifications. The model is chosen due to 
the following advantages, (a) it possesses increased 
computational efficiency, (b) it defines the response of 
concrete structures as dictated by tensile stresses, rather 
than compressive strength, (c) the flexural behavior is 
dominated by crack formation and propagation and 
yielding of reinforcement steel, and (e) the model can be 
scaled up to real-life structures as it retains objectivity of 
the results achieved for large finite elements. 

The concrete material matrix developed in the model 
assumes that the material is elastic and homogenous in the 
macroscopic sense, with the generally non-linear 
response of concrete divided into 3 stages, resulting in the 
stress-strain relationship shown in Fig. 1.  

Nonetheless, further study on the behavior of concrete 
under loading has shown that the stress-strain relationship 
is more accurately represented by a curve, indicating a 
nonlinear relationship. Yi et al. [8] developed an equation 
that results in a relatively accurate concrete stress-strain 
curve, given by:- 
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𝑓𝑓𝑐𝑐
𝑓𝑓𝑐𝑐′

=
𝛽𝛽𝑚𝑚�

𝜀𝜀𝑐𝑐
𝜀𝜀𝑐𝑐′

�

𝛽𝛽𝑚𝑚−1+�
𝜀𝜀𝑐𝑐
𝜀𝜀𝑐𝑐′

�
𝛽𝛽𝑚𝑚  

𝛽𝛽𝑚𝑚 = 𝛽𝛽𝑚𝑚,𝑎𝑎(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = �1.02 − 1.17 �𝐸𝐸0
𝐸𝐸𝑐𝑐
��
−0.74

         (𝜀𝜀𝑐𝑐 ≤ 𝜀𝜀𝑐𝑐′)  

𝛽𝛽𝑚𝑚 = 𝛽𝛽𝑚𝑚,𝑑𝑑(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) = 𝛽𝛽𝑚𝑚,𝑎𝑎(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) + (𝑎𝑎 + 𝑏𝑏𝑓𝑓)       (𝜀𝜀𝑐𝑐 ≥ 𝜀𝜀𝑐𝑐′)  

𝑎𝑎 = (12.4 − 1.66 × 10−2𝑓𝑓28)−0.46  

𝑏𝑏 = 0.83exp (−911/𝑓𝑓28)     (1) 

 

Where 𝛽𝛽 = 1

1− 𝑓𝑓𝑐𝑐
′

𝜀𝜀𝑐𝑐′𝐸𝐸𝑐𝑐𝑐𝑐

     

𝑓𝑓𝑐𝑐 concrete stress 
𝑓𝑓𝑐𝑐
′  maximum concrete stress, as 𝑓𝑓28 [16] 

𝑓𝑓28 concrete strength at 28 days 
𝜀𝜀𝑐𝑐  concrete strain 
𝜀𝜀𝑐𝑐′ strain corresponding to max stress 
𝐸𝐸0 secant modulus of elasticity at apex 
𝐸𝐸𝑐𝑐𝑖𝑖 initial tangent modulus of elasticity 

The initial value of 𝜀𝜀𝑐𝑐′ is assumed to be 0.002 to 
determine the value of 𝐸𝐸0, and appropriate iterations done 
to obtain the curve that best represents the problem in 
question. The limiting concrete strain 𝜀𝜀𝑐𝑐𝑓𝑓 is taken 
as 0.0035 [17]. The resulting stress-strain curve for C25 
(𝑓𝑓28 = 25𝑁𝑁/𝑚𝑚𝑚𝑚2) concrete, is shown in Fig. 2. 

 

 
Fig. 1: Piecewise linear stress-strain curve [6] 

At the beginning of the loading, the concrete is assumed 
to be a homogenous, linear isotropic material, defined by 
the matrix relation:- 

 

�
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑥𝑥𝑦𝑦

� =
𝐸𝐸𝑐𝑐𝑖𝑖

1 − 𝑣𝑣2 �

1 𝑣𝑣 0
𝑣𝑣 1 0

0 0
1 − 𝑣𝑣

2

� �
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑦𝑦

� (2) 

 
Where 𝐸𝐸𝑐𝑐𝑖𝑖 initial tangent modulus  

𝑣𝑣 Poisson’s ratio 
𝜀𝜀𝑥𝑥 , 𝜀𝜀𝑦𝑦 direct strain 
𝛾𝛾𝑥𝑥𝑦𝑦 shear strain 
𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦 normal stresses 
𝜏𝜏𝑥𝑥𝑦𝑦 shear stress 

Once the biaxial stress combination exceeds the initial 
yield surface, the material is assumed to be orthotropic. 
This assumption holds for all stress values outside the 
ultimate loading surface. The incremental constitutive 
relation defining the material at this stage is given by:- 

�
𝑓𝑓𝜎𝜎11
𝑓𝑓𝜎𝜎22
𝑓𝑓𝜏𝜏12

� = 1
1−𝑣𝑣2

�
𝐸𝐸1 𝑣𝑣�𝐸𝐸1𝐸𝐸2 0

𝑣𝑣�𝐸𝐸1𝐸𝐸2 𝐸𝐸1 0
0 0 (1 − 𝑣𝑣2)𝐺𝐺

� �
𝑓𝑓𝜀𝜀11
𝑓𝑓𝜀𝜀22
𝑓𝑓𝛾𝛾12

�   

       (3) 

Where  (1 − 𝑣𝑣2)𝐺𝐺 = 0.25�𝐸𝐸1 + 𝐸𝐸2 − 2𝑣𝑣�𝐸𝐸1𝐸𝐸2� 

𝐸𝐸1,𝐸𝐸2 secant moduli of elasticity oriented perpendicular 
and parallel to crack direction 

 

 
Fig. 2: Nonlinear concrete stress-strain curve 

However, it has been shown that the stress-strain 
relationship is not very sensitive to the compression ratio, 
thus it can be assumed that 𝐸𝐸1 = 𝐸𝐸2, and as such the 
model is applicable to plane stress problems [18]. The 
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concrete Poisson’s ratio is also varied with increasing 
stress following the relation [19]:- 

𝑣𝑣 = 0.00189𝑓𝑓𝑡𝑡 + 0.12 (4) 
 
Where 𝑓𝑓𝑡𝑡 tensile stress of concrete 
  𝑓𝑓𝑐𝑐 compressive stress of concrete 
 

2.2 Reinforcement steel material matrix 
The reinforcement bars are modelled using the layer 
model, where the rebars are assumed to be distributed 
over the concrete element at a certain orientation angle. 
The rebars embedded in the concrete plate are replaced by 
an equivalent steel element with distributed uniaxial 
material properties in each reinforcing direction [20].  

The reinforcing steel is assumed to be elastic-perfect 
plastic in tension and compression, with the axial stiffness 
considered only in the bar direction. The dimension of the 
equivalent steel element match those of the concrete 
element, with the thickness given by Kwak and Filippou 
[6] 

 

𝑓𝑓𝑠𝑠 =
𝐴𝐴𝑠𝑠
𝑏𝑏

= 𝜌𝜌𝑠𝑠𝑓𝑓𝑐𝑐 (5) 

 
where 𝑓𝑓𝑠𝑠 thickness of the steel element 

 𝑏𝑏 spacing of rebars 
 𝜌𝜌𝑠𝑠 reinforcing ratio 
 𝑓𝑓𝑐𝑐 effective depth 

𝐴𝐴𝑠𝑠 cross-sectional area of rebar in a 
particular direction 

The constitutive material matrix is defined by:- 

�
𝜎𝜎1
𝜎𝜎2
𝜏𝜏12

� = �
𝐸𝐸 0 0
0 0 0
0 0 0

� �
𝜀𝜀1
𝜀𝜀2
𝛾𝛾12

�    𝐸𝐸 = 𝐸𝐸𝑠𝑠1 𝑏𝑏𝑓𝑓𝑓𝑓𝑏𝑏𝑏𝑏𝑓𝑓 𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦
𝐸𝐸 = 𝐸𝐸𝑠𝑠2 𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏 𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑓𝑓𝑓𝑓𝑦𝑦𝑦𝑦  (6) 

3. Symplectic Elasticity for Thin Plates 
Symplectic elasticity is a concept that originated within 
the Hamilton formulation, where the phase space of 
certain classical systems have a structure similar to 
symplectic manifolds, which are closed nondegenerate 2-
form geometrical shapes [21]. The symplectic method 
holds several advantages over other classical methods for 
the analysis of engineering mechanics, including;-(a) The 
symplectic method has no need for trial functions, thus 
applicable to numerous boundary conditions of the plate 
element, (b) The method consolidates the existing 
solutions for static mechanics by mapping with a series of 
zero and nonzero eigen values and their associated 

eigenvectors, and (c) The method is applicable to 
specialized static mechanics problems for which solutions 
were not previously available [22].  

The method is applied to the problem of reinforced 
concrete slabs as concrete has been shown to exhibit some 
elasticity in the initial loading stages, also possessing 
some ductility in the cracked region, and is not completely 
brittle [23]. 

Introducing plane elasticity problems into the 
Hamiltonian canonical equations derives a system of 
symplectic solution applicable to rectangular thin plates. 
The symplectic solution can also be derived by an analogy 
between thin plate bending and plane elasticity, and is 
applicable to both rectangular and sectorial domains. The 
governing equation for a thin plate with a uniformly 
distributed load 𝑞𝑞 is given by 

 

∇2𝑥𝑥∇2𝑦𝑦𝑤𝑤 =
𝑞𝑞
𝐷𝐷

                                               (7) 

 
where ∇2is the Laplace operator, 𝐷𝐷 is the flexural 

rigidity of the plate element, and 𝑤𝑤 is the transverse 
deflection of the mid-plane of the plate. The strain energy 
density in terms of curvature:- 

𝜐𝜐𝜀𝜀(𝜅𝜅) =
1
2
𝜅𝜅𝑇𝑇𝐶𝐶𝜅𝜅 

= 1
2
𝐷𝐷�𝜅𝜅𝑥𝑥2 + 𝜅𝜅𝑦𝑦2 + 2𝑣𝑣𝜅𝜅𝑥𝑥𝜅𝜅𝑦𝑦 + 2(1 − 𝑣𝑣)𝜅𝜅𝑥𝑥𝑦𝑦2�  

         (8) 

Where; - 𝑣𝑣 is the Poisson’s ratio 
The elasticity coefficient matrix of material:- 

𝐶𝐶 = 𝐷𝐷 �
1 𝜐𝜐 0
𝜐𝜐 1 0
0 0 2(1 − 𝜐𝜐)

�            (9) 

The curvature vector is given by:- 

𝜅𝜅 = �
𝜅𝜅𝑥𝑥
𝜅𝜅𝑦𝑦
𝜅𝜅𝑥𝑥𝑦𝑦

� =

⎣
⎢
⎢
⎢
⎡

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2

− 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦⎦

⎥
⎥
⎥
⎤

             (10) 

The Pro-Hellinger-Reissner variation principle for the 
deformation of thin plates is given by [24]:- 
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𝛿𝛿П2 = 𝛿𝛿 ���𝜅𝜅𝑇𝑇𝐸𝐸�(∇)𝜙𝜙 − 𝜐𝜐𝜀𝜀(𝜅𝜅)�𝑓𝑓𝑑𝑑𝑓𝑓𝑦𝑦
.

𝑉𝑉
− � (𝜙𝜙𝑠𝑠𝜅𝜅𝑛𝑛𝑠𝑠���� + 𝜙𝜙𝑛𝑛𝜅𝜅𝑠𝑠� )𝑓𝑓𝑑𝑑

.

Г𝑢𝑢

− � [𝜅𝜅𝑛𝑛𝑠𝑠(𝜙𝜙𝑠𝑠 − 𝜙𝜙𝑠𝑠���) + 𝜅𝜅𝑠𝑠(𝜙𝜙𝑛𝑛 − 𝜙𝜙𝑛𝑛����)]
.

Г𝜎𝜎
𝑓𝑓𝑑𝑑� = 0 

 (11) 
Where:- 

𝐸𝐸�(∇) =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥

0

0 𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥⎦
⎥
⎥
⎥
⎤

: �
𝑀𝑀𝑥𝑥
𝑀𝑀𝑦𝑦
𝑀𝑀𝑥𝑥𝑦𝑦

� =

⎩
⎪
⎨

⎪
⎧

𝜕𝜕𝜙𝜙𝑥𝑥
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙𝑦𝑦
𝜕𝜕𝑦𝑦

1
2
�𝜕𝜕𝜙𝜙𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜙𝜙𝑦𝑦
𝜕𝜕𝑦𝑦
�⎭
⎪
⎬

⎪
⎫

: 𝜙𝜙 = �
𝜙𝜙𝑥𝑥
𝜙𝜙𝑦𝑦
�   

   (12) 
 
The subscripts 𝑦𝑦, 𝑑𝑑 represent the directions normal and 

tangential to the boundary respectively, while Г𝑢𝑢 and Г𝜎𝜎 
are the corresponding boundaries with specified natural 
conditions, such as forces and moments, and specified 
geometric conditions, such as displacements and 
gradients [24]. 

Substituting the strain energy density and the curvature 
vector into the Pro-H-R variation principle equation 
yields an equation with the state variables 𝜙𝜙𝑥𝑥 ,𝜙𝜙𝑦𝑦, 𝜅𝜅𝑦𝑦 and 
𝜅𝜅𝑥𝑥𝑦𝑦, whose variation results in the Hamiltonian dual 
equation:- 
�̇�𝑣 = 𝐻𝐻𝑣𝑣      ∶        𝑣𝑣 = �𝜙𝜙𝑥𝑥 ,𝜙𝜙𝑦𝑦, 𝜅𝜅𝑦𝑦,𝜅𝜅𝑥𝑥𝑦𝑦�

𝑇𝑇        (13) 

The Hamiltonian operator matrix is given by:- 

     (14) 

Applying the method of separation of variables to 𝑣𝑣 gives 
the equation:- 

𝑣𝑣(𝑑𝑑,𝑦𝑦) = 𝜉𝜉(𝑑𝑑)𝜓𝜓(𝑦𝑦)           (15) 

Substituting in the bending strain energy equation yields 
the expression:- 

𝜉𝜉(𝑑𝑑) = 𝑓𝑓𝑢𝑢𝑥𝑥             (16) 

and the eigenvalue equation:- 

𝐻𝐻𝜓𝜓(𝑦𝑦) = 𝑢𝑢𝜓𝜓(𝑦𝑦)            (17) 

where 𝑢𝑢 is the eigenvalue in the X-direction and 𝜓𝜓(𝑦𝑦) the 
corresponding eigenvector. The eigenvalues 𝜆𝜆 in the Y-
direction are obtained by the following substitution of the 
state variables in the eigenvalue equation:- 

𝜙𝜙𝑥𝑥 = 𝑓𝑓𝜆𝜆𝑦𝑦  ∶   𝜙𝜙𝑦𝑦 = 𝑓𝑓𝜆𝜆𝑦𝑦  ∶   𝜅𝜅𝑦𝑦 = 𝑓𝑓𝜆𝜆𝑦𝑦  ∶  𝜅𝜅𝑥𝑥𝑦𝑦 = 𝑓𝑓𝜆𝜆𝑦𝑦  

  (18) 

Expanding the determinant yields the eigenvalue 
equation:- 

(𝜆𝜆2 + 𝑢𝑢2)2 = 0  ∶    𝜆𝜆 = ±𝑢𝑢𝑓𝑓          (19) 

The general solution of the non-zero eigenvalues are 
expressed as [13]: - 

𝜙𝜙𝑥𝑥 = 𝐴𝐴1 cos(𝑢𝑢𝑦𝑦) + 𝐵𝐵1 sin(𝑢𝑢𝑦𝑦) + 𝐶𝐶1𝑦𝑦 sin(𝑢𝑢𝑦𝑦) + 𝐷𝐷1𝑦𝑦 cos(𝑢𝑢𝑦𝑦) 
𝜙𝜙𝑦𝑦 = 𝐴𝐴2 sin(𝑢𝑢𝑦𝑦) + 𝐵𝐵2 cos(𝑢𝑢𝑦𝑦) + 𝐶𝐶2𝑦𝑦 cos(𝑢𝑢𝑦𝑦) + 𝐷𝐷2𝑦𝑦 sin(𝑢𝑢𝑦𝑦) 
𝜅𝜅𝑦𝑦 = 𝐴𝐴3 cos(𝑢𝑢𝑦𝑦) + 𝐵𝐵3 sin(𝑢𝑢𝑦𝑦) + 𝐶𝐶3𝑦𝑦 sin(𝑢𝑢𝑦𝑦) + 𝐷𝐷3𝑦𝑦 cos(𝑢𝑢𝑦𝑦) 
𝜅𝜅𝑥𝑥𝑦𝑦 = 𝐴𝐴4 sin(𝑢𝑢𝑦𝑦) + 𝐵𝐵4 cos(𝑢𝑢𝑦𝑦) + 𝐶𝐶4𝑦𝑦 cos(𝑢𝑢𝑦𝑦) + 𝐷𝐷4𝑦𝑦 sin(𝑢𝑢𝑦𝑦) 

     (20) 

 
Fig. 3: Coordinate system for plate element 

All the constants are not independent and can be 
determined by choosing one set of constants to be 
independent, and then substituting the general solution 
equations into the eigenvalue equation. Furthermore, 
substituting the general solution into the corresponding 
boundary conditions on either side of the plate 
element (𝑦𝑦 = 𝑏𝑏1 𝑏𝑏𝑏𝑏 𝑏𝑏2), gives the transcendental 
equation of non-zero eigenvalues and the corresponding 
eigenvectors. The method of eigenvector expansion is 
then applied [25]. 

 

4. Verification of Results 
The validation of any kind of model means to prove the 
whether the model is true or not, based on a pre-
established set of criteria. The validation of the model is 
an iteration step process composed of conceptual model 
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validation, computerized model verification, and 
operational validation [26].  

Conceptual model validation determines that the model 
representation of the problem is ‘reasonable’ for the 
intended purpose of the model, by checking that the 
assumptions and theories used to develop the conceptual 
model are correct. The proposed method applied the 
compressive stress-strain curve for concrete developed 
from the equations of Yi et. al. [8] to determine the elastic 
modulus and Poisson’s ratio of the reinforced concrete 
plate at different loading intervals. The intervals were 
chosen such that the curve between each successive point 
can be assumed to be linear. This then allowed for the 
application of the symplectic method to get accurate 
results for the deflection of the reinforced concrete plate.  

Computerized model validation, on the other hand, 
ensures that the implementation of the conceptual model 
through the computer programming is up to par. This was 
achieved by ensuring the equations describing the 
deflection of the plate were accurately programmed into 
the software. Operational validation is the last step, where 
the output generated by the simulated model was 
compared to the problem entity or system, and determine 
the accuracy of the model to its intended applicability. 
The operational validity of the proposed model was 
achieved by comparing the results derived from the 
proposed model with experimental deflection results 
conducted on congruent slabs found in literature. 

The problem of rectangular reinforced concrete plates 
simply supported on all four edges is chosen to check the 
suitability of the proposed model. The plate is bound 
within the domain defined by −𝑎𝑎

2
≤ 𝑑𝑑 ≤ 𝑎𝑎

2
 and 0 ≤ 𝑦𝑦 ≤

𝑏𝑏 as shown in Fig 3. The boundary conditions of the plate 
are defined by:- 

𝑀𝑀𝑦𝑦|𝑦𝑦=0,𝑏𝑏| = 0;  𝑤𝑤|𝑦𝑦=0,𝑏𝑏| = 0;   𝑀𝑀𝑥𝑥�𝑥𝑥=±𝑎𝑎2�
= 0;    

                 𝑤𝑤|𝑥𝑥=±𝑎𝑎/2| = 0   ;    𝑘𝑘𝑦𝑦|𝑥𝑥=±𝑎𝑎/2| = 0        (21) 
The bending deflection of the simply supported thin 

plate under uniformly distributed load using the 
symplectic method is [13]:- 
𝑤𝑤 =

𝑞𝑞
24𝐷𝐷

(𝑦𝑦4 − 2𝑏𝑏𝑦𝑦3 + 𝑏𝑏3𝑦𝑦)  +                                                     

2𝑞𝑞
𝐷𝐷𝑏𝑏

�
[𝜇𝜇𝑛𝑛𝑑𝑑 sinh(𝜇𝜇𝑛𝑛𝑑𝑑) − cosh(𝜇𝜇𝑛𝑛𝑑𝑑) (2 + 𝛼𝛼𝑛𝑛 tanh𝛼𝛼𝑛𝑛)] sin(𝜇𝜇𝑛𝑛𝑦𝑦)

𝜇𝜇𝑛𝑛5 cosh𝛼𝛼𝑛𝑛

∞

𝑛𝑛=1

 

                                                                                              (22) 
Where  𝜇𝜇𝑛𝑛 = 𝑛𝑛𝑛𝑛

𝑏𝑏
    ;     𝛼𝛼𝑛𝑛 = 𝛼𝛼𝑛𝑛𝑛𝑛

2𝑏𝑏
    ;    𝛼𝛼 = 𝐷𝐷×𝑤𝑤𝑚𝑚𝑚𝑚𝑥𝑥

𝑞𝑞𝑏𝑏4
  

The value of 𝛼𝛼 is dependent on the maximum deflection 
of the plate at a load intensity. For isotropic materials, the 
value is constant as the flexural behavior is elastic up to 

the yield surface. In the case of concrete, however, the 
value of 𝛼𝛼 varies with increasing load and the cracking 
propagation. The value adopted in the formula is taken at 
the beginning of the loading process, where the flexural 
behavior of concrete is assumed to be linearly elastic. 

The Pearson Chi-squared distribution test was applied 
as a test of the statistical significance of the results from 
the proposed model. It is the only available statistical test 
applicable to structural equation modelling to test the 
goodness of fit of the results derived from the model to 
those from the experimental tests [27]. The confidence 
level adopted for this work is 5%.  

The chi-square statistic was calculated as [28]: 

𝜒𝜒2 = �
(𝑂𝑂𝑜𝑜 − 𝑂𝑂𝑒𝑒)2

𝑂𝑂𝑒𝑒
 

(23) 

 

Where 𝑂𝑂𝑜𝑜 observed outcome 
 𝑂𝑂𝑒𝑒 expected outcome 

 
The chi-squared statistic is then compared to the chi-

squared table, and the hypothesis accepted or rejected. 

5. Results and Discussions 
The reinforced concrete slabs were modelled in finite 
element software, with pinned linear supports for the 
edges. The steel reinforcement was modelled as a layer 
whose thickness and position were determined by the 
reinforcement placement and quantity provided in the 
reinforced slab tested in existing literature. The slab 
element was then divide into smaller finite elements 
50𝑚𝑚𝑚𝑚 wide in the X and Y directions  as shown in Fig. 
4.  

The program idealizes the linear pinned support as a 
series of pinned supports at every node that falls along the 
edges of the plate. The thickness of the element is taken 
to be the thickness of the reinforced concrete plate, since 
no appreciable change in material properties is assumed 
to occur across the thickness of the plate. The deflection 
of the plate due to uniformly distributed load is as shown 
in Fig. 5. The maximum deflection at each load increment 
was then recorded for future comparison with congruent 
slabs in literature. 
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Fig. 4: Finite element division of the RC plate 

5.1 Doubly reinforced slab by Ghoneim and 
MacGregor [15] 

An experimental setup on RC slabs subjected to in-plane 
and lateral loads was carried out by Ghoneim and 
MacGregor [15], where one of the tested slabs, designated 
C1, was a square, simply supported along the four edges, 
and subjected to a uniformly distributed load represented  
as nine point loads. This slab was analyzed using the 
proposed model. The slab is a doubly reinforced slab, 
comprising of two layers of 6.53 mm diameter 
reinforcement, in both the compressive and tensile zones, 
to give a reinforcement ratio of 0.38% per layer per 
direction. 
  

 

Fig. 5: Deflection distribution on the plate 

The geometric properties of the tested slab are given in 
Table I. The concrete used had a compressive and tensile 
strength of 25.21 𝑁𝑁/𝑚𝑚𝑚𝑚2 and 2.31 𝑁𝑁/𝑚𝑚𝑚𝑚2 
respectively. The reinforcement steel had a Young’s 

modulus of 181.5 𝑘𝑘𝑁𝑁/𝑚𝑚𝑚𝑚2 and an ultimate yield stress 
of 450 𝑁𝑁/𝑚𝑚𝑚𝑚2.  

Fig. 6 show the concrete compressive stress-strain 
curve for the reinforced concrete plate. The load- central 
deflection curve for the plate developed from the 
proposed model is plotted in Fig. 7 along with the results 
from the experimental setup, a layered finite element 
model proposed by Polak and Vecchio [29], and a layered 
shear-flexural plate element by Zhang et al. [30]. 

 

 
Fig. 6: Stress-Strain curve for Slab C1 

Table I: Dimensions of Slab C1 (mm) 
Dimensions (mm) 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 × 𝟔𝟔𝟏𝟏 
 

X-Direction, distance of top bar from top surface 21.9 
X-Direction, distance of bottom bar from top surface 56.8 
Y-Direction, distance of top bar from top surface 15.6 
Y-Direction, distance of bottom bar from top surface 50.5 
  
Polak and Vecchio [29] applied the smeared rotating 

crack approach to account for the reduction in stiffness 
and strength of concrete due to the presence of cracks in 
the matric transverse to the direction of load application. 
A layered element formulation was then applied to 
develop a degenerate isoparametric quadrilateral element, 
with the problems of zero energy and shear locking 
avoided by selective integration.  

Zhang et al [30] proposed a unified displacement-based 
finite element formulation of a 4-node, 24 DOF 
rectangular layered plate based on Timoshenko’s 
composite beam functions and the Mindlin-Reissner thick 
plate theory. The composite beam functions proposed by 
Timoshenko were extended to the analysis of reinforced 
concrete plates avoiding the problem of shear locking. 
The element was formulated by employing a Total 
Lagrangian approach and incorporated into a nonlinear 
finite element solution algorithm. 
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Fig. 7: Load deflection curve for Slab C1 

5.2 Singly reinforced slab supported by its four 
edges 

A square, simply supported slab subjected to uniformly 
distributed loading was tested by Taylor et al. [14]. The 
dimensions of the slab were 1980 × 1980 × 51𝑚𝑚𝑚𝑚, with 
roller supports placed 75mm from the edges, resulting in 
an effective span of 1830 × 1830 × 51𝑚𝑚𝑚𝑚. The slab had 
a single layer of 4.76mm diameter reinforcement in the 
tensile zone, with the reinforcement in the x- direction 
spaced at 76mm at an effective depth of 43.6mm, and that 
of the y-direction spaced at 63.5mm at an effective depth 
of 39mm.  

The concrete used had a compressive strength of 
35.04 𝑁𝑁/𝑚𝑚𝑚𝑚2 and a tensile strength of 3.6 𝑁𝑁/𝑚𝑚𝑚𝑚2 
respectively. The reinforcement steel had a Young’s 
modulus of 206.91 𝑘𝑘𝑁𝑁/𝑚𝑚𝑚𝑚2 and an ultimate yield stress 
of 375.9 𝑁𝑁/𝑚𝑚𝑚𝑚2. The decline in the elastic modulus of 
the plate with increasing strain due to load is shown in 
Fig. 8. Lima et al [31] combined the Mazars damage 
model to simulate stiffness reduction in concrete post-
cracking with the Classical Theory of Laminates to 
predict the flexural behavior of reinforced concrete slabs. 
The load-deflection curve obtained from the proposed 
model is compared to results obtained from the 
experimental setup and the simplified isotropic damage 
model proposed by Lima et al [31] in Fig. 9.  

 

 

Fig. 8: Plot of elastic modulus against strain for singly 
reinforced concrete slab 

 

Fig. 9: Load deflection curve of a singly reinforced simply 
supported plate 

6. Conclusion 
Based on the modified stiffness approach and layer 
approach for modelling of reinforced concrete slabs, 
idealized stress-strain relations are applied to virtual 
concrete and reinforcement steel layers, for which the 
symplectic method is applied to obtain accurate deflection 
values of moderately thin reinforced concrete slabs. 

The proposed model is able to overcome the 
orthotropic, non-homogenous nature of reinforced 
concrete plates by dividing the problem into smaller 
intervals, where the flexural behavior can be defined as an 
elastic problem. The efficiency of the proposed model to 
predict the load-deflection behavior of reinforced 
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concrete slabs is exhibited by the comparison with 
experimental results and previous models, providing 
relatively acceptable results. 

The results of the defection of the doubly reinforced 
slab differ from the experimental results with a standard 
deviation of 3.62 mm, with the largest difference 
observed being 6.37 mm towards the failure point. The 
chi-squared analysis of the results yielded a value of 
15.82, with a degree of freedom of 18, thus yielding a 
probability of 0.604.  

For the singly reinforced slab, the results from the 
proposed model differ from the experimental results with 
a standard deviation of 1.173 mm, with the largest 
difference measured being 2.32 mm. The chi-squared 
analysis of the results yielded a value of 5.189, with a 
degree of freedom of 24. There is therefore, no 
statistically significant difference between the results 
from the model and those from the experimental set ups 
for both doubly and singly reinforced concrete slabs.  

It is also observed that the proposed model offers 
slightly more accurate results than some other numerical 
solutions for similar static mechanics problems. The 
proposed method has accuracy similar to the layered 
shear-flexural plate element presented by Zhang et al [30] 
for the doubly reinforced slab, which gave a standard 
deviation of 3.58 mm. It also offers slightly more accurate 
results than the layered finite element model proposed by 
Polak and Vecchio [29], whose standard deviation is 
4.92mm. The proposed model also offers slightly greater 
accuracy than the simplified isotropic damage model 
proposed by Lima et al [31] for the singly reinforced slab, 
giving a standard deviation of 2.4mm. 
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